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ABSTRACT 

COMPUTATIONAL FLUID DYNAMICS MODELS OF ELECTROMAGNETIC 

LEVITATION EXPERIMENTS IN REDUCED GRAVITY 

SEPTEMBER 2019 

 

GWENDOLYN P. BRACKER, B.S.E., CASE WESTERN RESERVE UNIVERSITY 

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Robert W. Hyers 

 

Electromagnetic levitation experiments provide a powerful tool that allows for the 

study of nucleation, solidification and growth in a containerless processing environment. 

Containerless processing allows for the study of reactive melts at elevated temperatures 

without chemical interactions or contamination from a container. Further, by removing 

the interface between the liquid and its container, this processing technique allows for 

greater access to the undercooled region for solidification studies. However, in these 

experiments it is important to understand the magnetohydrodynamic flow within the 

sample and the effects that this fluid flow has on the experiment.  

A recent solidification study found that aluminum-nickel alloy sample have an 

unusual response of the growth rate of the solid to changes in undercooling. This alloy 

experienced a decrease in the growth velocity as the initial undercooling deepened, 

instead of the expected increase in solidification velocity with deepening undercoolings. 

Current work is exploring several different theories to explain this phenomenon. 

Distinguishing among these theories requires a comprehensive understanding of the 

behavior of the internal fluid flow. Our project, USTIP, has done flow modeling to 
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support this and multiple other collaborators on ISS-EML. The fluid flow models 

presented for the aluminum-nickel sample provide critical insights into the nature of the 

flow within the aluminum-nickel alloy experiments conducted in the ISS-EML facility. 

These models have found that for this sample the RNG k-ε model should be used with 

this sample at temperatures greater than 1800 K and the laminar flow model should be 

used at temperatures lower than 1600 K. 

Other work in the ISS-EML, has studied the thermophysical properties of liquid 

germanium and has found the most recent measurements using oscillating drop 

techniques to have a discrepancy from the expected property measurements taken 

terrestrially. Investigating this discrepancy required the quantification of the velocity and 

characterization of the internal fluid flow in the drop. The models have found that the 

flow within the sample maintains turbulent behavior throughout cooling.  

This thesis presents the analysis of the internal flow of four additional samples processed 

in the International Space Station Electromagnetic Levitation facility. These samples 

consist of the following alloys: Ti39.5Zr39.5Ni21, Cu50Zr50, Vitreloy 106, and Zr64Ni36. Our 

collaborators work required the internal flow to be characterized and quantified for their 

work on solidification. In addition to quantifying the velocity of the flow, the Reynolds 

number was calculated to characterize the flow during processing. Additionally, the 

shear-strain rate was calculated for the flow during processing up to the recalescence of 

the melt.   
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CHAPTER 1 

INTRODUCTION 

1.1 Purpose 

The electromagnetic levitation (EML) program seeks to undertake various 

experiments and measurements on the fundamental properties, solidification behavior, 

and the effects of fluid flow on liquid metals. This family of projects is a long-standing 

collaboration of the National Aeronautics and Space Administration (NASA), the 

European Space Agency (ESA), the Deutsches Zentrum für Luft- and Raumfahrt (DLR, 

the German Center for Aerospace) and other national and international collaborators to 

investigate metals and the properties of liquid metals though containerless processing in 

an EML field. In these experiments the effects of magnetohydrodynamic flow are unique 

for each set of experiments. These effects can be indirectly studied through 

computational fluid dynamics models that relate the control voltage of the 

electromagnetic field to the flow within the drop.  

This research is working to develop an improved understanding of the behavior, 

thermophysical properties, and solidification fundamentals of liquid metals. This 

improved understanding will benefit the current casting industry by allowing for better 

control of the microstructure through a more developed understanding of nucleation and 

phase selection. The improved property data will also allow for more accurate predictions 

of conditions during manufacturing processes. Further, this fundamental research is of 

critical importance to the developing additive manufacturing and aerospace industries 

where modeling is rapidly advancing and critical to producing reliable, certifiable parts 
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[1]–[3]. Current work aims to develop models of the process with the capacity to 

accurately predict the properties of the material and account for inhomogeneities based 

on the process [4]. Such models would allow for the certification and qualification of the 

manufacturing process and for the development of the ability to then produce parts based 

on the models.  

This thesis seeks to contribute to the EML project by providing computational fluid 

dynamics (CFD) simulations of the flow within the liquid drops during the cooling 

process. These simulations are an important part of validation for measurements taken 

and provide a means to employ fluid velocity as an experimental parameter even though 

it cannot be measured directly.  In the oscillating drop method, the viscosity and surface 

tension of the liquid can be measured during contactless processing; however this 

requires that the flow within the drop be laminar [5]. Additionally, other experiments 

utilize flow velocity as an experimental parameter and require the model to relate theory 

to direct observation [6]–[9]. 

1.2 Thesis Outline  

Background information on the thesis is found in Chapter 2. This includes an 

overview of the larger overarching research program including the properties studied and 

measurements taken. Also included in Chapter 2 is a discussion of the relevance of 

computational fluid dynamics to the project, the oscillating drop method, fundamentals of 

computational fluid dynamics, the flow models used in the simulations, and calculations 

used to evaluate the qualitative and quantitative flow behavior. Chapter 3 discusses the 

overall set-up of the model including the boundary conditions. The preliminary work is 

presented in Chapter 4 and discusses the validation of model used to simulate flow within 
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the drop against prior work. As part of the preliminary work to this thesis, flow within 

two different samples was analyzed. Chapter 5 presents the results studying the flow in a 

germanium sample. Chapter 6 presents the results studying the flow in an aluminum-

nickel alloy sample. Chapters 7-10 provides a detailed look at the flow in several other 

samples including titanium-zirconium-nickel, copper-zirconium, Vitreloy, and 

zirconium-nickel, respectively.  Finally, overall conclusions are given in Chapter 11, and 

future work suggested in Chapter 12.  
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CHAPTER 2 

BACKGROUND 

2.1 Electromagnetic Levitation Project 

The work presented in this thesis seeks to aid the larger family of EML projects. 

These projects are a long-term collaboration among NASA, ESA, the DLR, and others to 

study the melting, solidification, and liquid properties of conductive metals, alloys, and 

semiconductors [10]. Under the scope of the larger program are a wide array of 

experiments that seek to develop a better understanding of the fundamental properties and 

behaviors of liquid metals. The magnetohydrodynamic flow effects of the EML field are 

unique for each experiment due to variations in the electrical conductivity of the melt and 

the voltage applied to generate the EML field.  

Fluid dynamics simulations are used to study the behavior of the flow within the 

samples during the cooling process and are an important part of the validation to 

measurements taken. Often the flow within the drops is not directly observable, so 

simulations can be used to relate the control voltage applied to the system to the velocity 

in the drop. Based on the properties of the liquid, the Reynolds number can be used to 

characterize the flow as laminar or turbulent. This characterization is important to 

understanding the results of the oscillating drop method, which requires laminar flow for 

valid results [5]. Additionally, other experiments utilize flow velocity as an experimental 

parameter and require the model to relate theory to direct observation [6]–[9], [11]. 
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2.2 Oscillating Drop Method  

The oscillating drop method allows for the containerless measurement of surface 

tension and viscosity and has been applied in EML and in many electrostatic levitation 

studies. The oscillating drop method assumed the liquid sample to be a force-free, 

inviscid droplet that behaves like a mechanical oscillator. The spring and dashpot system 

closely models the behavior exhibited by the samples observed in the EML project on the 

International Space Station (ISS) where the experiments for the project take place. In 

such a system, the levitation field is used to induce surface oscillations. Using the 

relations given by Rayleigh [5] and Lamb [12], the frequency of the oscillations is used to 

determine the surface tension and the damping of the oscillations is used to determine the 

viscosity of the liquid. These are given in the following equations:  

 

𝑓𝑓𝑙𝑙 =  �
𝑙𝑙(𝑙𝑙 − 1)(𝑙𝑙 + 2)𝛾𝛾

3𝜋𝜋𝜋𝜋
�

1/2

 

1 

𝜏𝜏𝑙𝑙 =  
𝜌𝜌𝑅𝑅0

2

(𝑙𝑙 − 1)(2𝑙𝑙 + 1)𝜇𝜇
 

2 

Equation 1 is the relation used to determine the surface tension, γ, from the sample’s 

mass, m, the natural frequency of the oscillations,𝑓𝑓𝑙𝑙, and the mode of the oscillations, l. 

Equation 2 is used to determine the viscosity of the fluid, μ, using the damping 

coefficient, 𝜏𝜏𝑙𝑙, the density, ρ, the radius of the sample, R0, and the model of the 

oscillations, l.  
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To ensure that Rayleigh’s assumption of inviscid behavior is satisfied, the following 

parameter, α2, proportional to the quality factor, Q, of the mechanical oscillations. This 

parameter was developed to relate the relative effects of surface tension and viscosity. 

The value of α2  should be greater than 59, as determined by Reid and Suryanarayana 

[13], [14]. This ensures that deviations of the natural frequency of the drop due to viscous 

effects are less than 1%. The calculation of α2 is given in Equation 3.  

 

𝛼𝛼2 =  
(8𝛾𝛾𝜌𝜌𝑅𝑅0)1/2

𝜇𝜇
 

3 

The analyses of Rayleigh and Lamb assume that the amplitude of the oscillations is 

infinitesimal. For amplitudes up to about 1% change in polar radius, these assumptions 

are valid. Xiao, et. al., derived an empirical correction for larger amplitudes through a 

review of prior theoretical and experimental work on oscillations of droplets with finite 

amplitudes [15].  

The oscillating drop method is extremely sensitive to liquid flow within the drop. 

Accurate viscosity measurements using this method require the internal flow to be 

laminar and that the internal flow not cause any energy dissipation to dampen the 

oscillations. Turbulence in the flow, allows for additional damping in the oscillations of 

the drop by allowing energy to be dissipated across the turbulent eddies. The energy 

dissipation results in damping times dominated by the turbulent dissipation rather than 

the liquid’s inherent viscosity. [11] 
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The flow within the drop can be characterized very occasionally through the 

observation of tracer particles on the surface of the drop. This was observed in a 

palladium-silicon sample in EML on the space shuttle [16]. The tracer particles were 

observed to collect in the stagnation lines of the flow and were used to determine the 

laminar-turbulent transition. However, in the samples processed in the EML project, such 

tracer particles are rarely visible in the video to characterize the flow. Alternatively, 

computational fluid dynamics is used to calculate the flow velocity as a function of the 

thermophysical properties of the fluid and the control voltage of the applied 

electromagnetic field. Using this velocity and the known properties and the size of the 

sample, the Reynolds number is calculated to quantitatively characterize the flow 

behavior. 

2.3 Fluid Flow and Solidification Studies  

Convection of the fluid in the oscillating drop also affects the solidification and 

growth behavior of the drop. By using an applied force field the magnetohydrodynamics 

can be modeled to gain a deeper understanding of the influence that convection has on 

nucleation phenomena, growth kinetics, phase selection, and metastable phase formation 

[6]. 

In undercooled melts, the properties of the fluid flow affect the interactions between 

sub-critical nuclei within the drop [9] as is described by the coupled-flux nucleation 

model [7], [9], [17], [18]. In this model of nucleation diffusive and interfacial fluxes are 

considered when modeling the behavior of nuclei clusters. Each nuclei is surrounded by 

its diffusion field from which atoms are incorporated into the cluster and from which 

atoms dissolve back into the melt. These clusters and their diffusion fields are carried 
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along by the flow of the melt, as is shown in Figure 1, below. In non-uniform flows, like 

those that occur in EML, nuclei on adjacent streamlines move at different velocities. If 

the distance between clusters in the direction perpendicular to the flow is smaller than the 

diameter of the diffusion field, the diffusion fields will interact. Alternatively, if the 

distance between clusters in the direction normal to the flow is larger than the diameter of 

the diffusion field, the nuclei can pass each other without interacting [9]. In experiments, 

the shear-strain rate is important to calculate and ensure the diffusion fields around the 

nuclei are not interacting [7]. 

 

Figure 1: Coupled-flux nucleation model and the effects of fluid flow on the diffusion 

fields around subcritical nuclei [9], [19]. 

The nucleation of a stable, solid phase is also affected by the velocity of the fluid 

flow across growing dendrites. The authors theorize, when the velocity of the flow is 

sufficiently large, the primary dendrite deflects in the direction of the flow causing the 

secondary arms to collide with those of adjacent dendrites and form narrow crevices 
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between the dendrite arms, as is shown in Figure 2,  [20], [21]. In accordance with classic 

nucleation theory, these crevices allow for a reduced critical nuclei volume and energy to 

nucleate a stable phase [22].  

 

Current work also aims to explore the affect the fluid flow has on the growth of the 

solid phase into the liquid. It is 

typically expected that as the 

undercooling deepens, the velocity 

of the solidification front will 

increase [22]. The expected 

relationship between the growth 

rate and undercooling at the 

interface is shown for different 

interfaces in Figure 3 [19]. 

Figure 2: Depiction of growing dendrites. (a) There is no deflection of the dendrites 

and the secondary arms do not collide. (b) The convective velocity is strong enough to 

cause deflection and the secondary arms collide. Collision occurs within the circled 

region. [17], [18]  

Figure 3: The influence of interface 

undercooling (ΔTi) on growth rate for 

atomically rough and smooth interfaces. [19] 
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However, some undercooled liquids undergo a two-step solidification path, first forming 

a primary metastable solid and only afterward forming the stable solid secondary phase. 

When an alloy passes through a two-phase region during cooling, the growth rate of the 

stable solid is independent of the initial undercooling. The growth of primary phase is 

controlled by the initial undercooling and determines the fraction of solid particles in the 

melt. The second phase does not experience the initial undercooling but is instead 

undercooled by the melt. [8]. Other solidification phenomena include instances of double 

recalescence in which metastable solids are formed before the stable phase nucleates. 

However, neither of these scenarios fully explain the unusual growth behavior seen in 

recent work on aluminum-nickel alloys in which it was observed that the growth velocity 

decreases with increased undercooling for certain alloy compositions [23]. Figure 4 

shows the results from studying the dendrite growth velocity as a function of 

undercooling under terrestrial and reduced gravity conditions over arrange of alloy 

compositions [20]. Further investigations are underway to explain this phenomenon 

including exploration of the effects of fluid flow. 

The fluid flow is also a strong contributor to turbulent mixing in the liquid and 

determining the phase selection that can occur.  At high flow velocities, turbulence 

causes sufficient mixing to approach the behavior of perfect mixing in the liquid which 

results in a more homogenous composition.  Low flow velocities during growth result in 

mixing dominated by diffusion and produce a gradient composition based on the rejection 

of solute during solidification [22]. 
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Figure 4: Anomalous dendrite growth in undercooled melts of Al-Ni alloys in relation to 

results obtained under terrestrial (open circles) and in reduced gravity (filled triangles). 

[20]. 
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2.4 Computational Fluid Dynamics  

Computational fluid dynamics (CFD) 

applies a set of numerical methods to 

approximate the solution to the differential 

equations used fluid dynamics and heat 

transfer problems. This is accomplished 

by discretizing the partial differential 

equations that define fluid mechanics into 

non-linear algebraic equations. These 

algebraic equations are solved using 

numerical methods with successive linear 

approximations. [24], [25] 

2.4.1 Fundamental Governing 

Equations 

The fundamental governing equations 

of fluid dynamics are the primary partial 

differential equations that CFD sets out to 

solve. For the purposes of this discussion 

of the fundamental governing equations, the nomenclature used is given in Table 1. The 

primary set includes the laws of conservation of mass, conservation of momentum, and 

conservation of energy with additional equations to account for any special phenomena, 

like turbulence.  

Table 1: Nomenclature for the discussion 

of the fundamental governing equations of 

fluid dynamics 

ρ Density  

t Time 

p Pressure 

µ Viscosity  

e Energy 

𝑽𝑽 Velocity in vector space  

f Force in vector space  

ui Velocity in cartesian coordinates  

xi Cartesian coordinates 

fi Force in cartesian coordinates 

Sij Strain rate tensor 

δij Kroneker delta-tensor 

q Internal energy per unit mass 

�̇�𝑄 Rate of internal heat generation 
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The law of conservation of mass defines the systems such that mass cannot be created 

or destroyed and in its differential form it is often known as the continuity equation 

shown below in equation 4. In incompressible flows, ρ is assumed to be constant in each 

phase and equation 4 reduces to equation 5 [24]–[27].  

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜌𝜌𝑽𝑽) = 0 

4 

∇ ∙ 𝑽𝑽 = 0 

5 

 Newton’s second law states that the change in the momentum of a body is equal to 

the net force acting upon it. When an ideal inviscid fluid is assumed, the momentum 

equation takes the form of Euler’s equation given in equation 6 in which states that the 

mass per unit volume times acceleration is equal to the sum of the forces applied per unit 

volume.  

𝜌𝜌
𝑑𝑑𝑽𝑽
𝑑𝑑𝜕𝜕

=  −∇𝑝𝑝 +  𝜌𝜌𝒇𝒇 

6 

However, in fluid mechanics this system needs to account for both body forces acting 

directly on the mass of the fluid and surface forces acting on the surface of the fluid 

element. These are used to derive the Navier-Stokes equations as follows in equation 7. 

Under the assumption of an incompressible fluid with constant viscosity and defining the 

rate of strain tensor (equation 8), this reduces to equation 9 [24]–[27].  
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𝜌𝜌
𝐷𝐷𝑢𝑢𝑖𝑖

𝐷𝐷𝜕𝜕
=  𝜌𝜌𝑓𝑓𝑖𝑖 −

𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

+ 
𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
�2𝜇𝜇𝑆𝑆𝑖𝑖𝑗𝑗 −  

2
3

𝜇𝜇(∇ ∙ 𝑽𝑽)𝛿𝛿𝑖𝑖𝑗𝑗� 

7 

𝑆𝑆𝑖𝑖𝑗𝑗 ≡
1
2

�
𝜕𝜕𝑢𝑢𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
+  

𝜕𝜕𝑢𝑢𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖
� 

8 

𝜌𝜌
𝐷𝐷𝑽𝑽
𝐷𝐷𝜕𝜕

=  −∇𝑝𝑝 + 𝜇𝜇∇2𝑽𝑽��⃗ +  𝜌𝜌𝑓𝑓 

  9 

The final governing equation of fluid dynamics is the based on the first law of 

thermodynamics: energy is conserved. The equation for this using total energy is given in 

equation 10 [24], [25].  

𝜌𝜌
𝐷𝐷𝐷𝐷
𝐷𝐷𝜕𝜕

=  −∇ ∙ 𝒒𝒒 −  ∇ ∙ (𝑝𝑝𝑽𝑽) +  �̇�𝑄 + 𝜌𝜌𝑓𝑓 ∙ 𝑽𝑽 

10 

 The solution to these equations requires a set of boundary conditions to reduce the 

number of unknowns in the system and dictate a particular solution. It is necessary to 

define one boundary condition or initial condition per variable per derivative taken to 

avoid unknown constants of integration. Often defining the system implies the boundary 

conditions used, for example how the fluid interacts with the wall is determined by the 

fluid. In an inviscid fluid, impermeable wall conditions are applied and the fluid can slip 

tangentially along the wall; while in a viscous system no-slip conditions are applied to the 

wall [24], [25]. Other boundary conditions that can be set include the domain for open 

boundaries such as an inlet or outlet for the fluid and restrictions on the computational 
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solution [24]. Details on the boundary conditions used in the model for this thesis are 

provided in Chapter 3: Model Set-Up. 

2.4.2 Discretization Methods 

There are several different approaches to discretizing the partial differential equations 

into algebraic equations. These approaches include finite element methods, finite volume 

methods and the finite difference method.  

The finite element method can be used to solve the partial differential equations of 

fluid dynamics. This method divides the domain into cells or elements that form a grid. 

The finite element method allows for elements of be either triangular or quadrilateral and 

to be rectilinear or curved while the grid can be either structured or unstructured. This 

allows the finite element method to easily handle highly complicated geometries [25]. In 

solving fluid dynamics problems with the finite element method, the solution is assumed 

to have a given form. The functional space of the solution is determined by varying the 

function values between nodes in the grid and as a result of this the solution 

representation is strongly linked to the geometric representation of the domain [25]. The 

method by which finite element modeling finds the solution is by solving the integral 

form of the partial differential equation instead of directly solving the partial differential 

equations themselves. The most general method used to accomplish this is the method of 

weighted residuals. This method incorporates differential boundary conditions and allows 

for the easy construction of higher order methods [25]. Finally, the finite element method 

uses discrete equations that are constructed from the element level and are then 

assembled into the functions over the domain [25].  
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Finite volume methods can also be used to solve fluid dynamics problems by directly 

discretizing the integral form of the equations [24], [25]. In the finite volume method, the 

domain is divided into non-overlapping cells that cover the whole domain. These cells 

can be triangular or quadrilateral and form either a structured or unstructured grid. The 

finite volume method allows for the flexibility of the finite element method [25]. Nodes 

on the grid are then used to represent the interpolation structure, similar to finite element 

analysis. Nodes are often placed in a cell-centered arrangement; however, there are other 

arrangements of the nodes including cell-vertex schemes and staggered grid approaches 

[24], [25]. The finite volume method applies the conservation laws to predetermined 

nodes in the mesh [24], [25]. These volumes on which the conservation laws are applied 

can coincide with the cells but do not have to and can overlap and form the mesh of the 

grid [25]. By decoupling the volumes from the cells, the freedom in determine the 

function representing the flow field is increased. The finite volume method combines the 

flexibility of the finite element method with the flexibility of defining a discrete flow 

field as in the finite difference method [25]. However, the finite volume method has 

difficulty calculating the accurate derivatives because the computational grid is not 

necessarily orthogonal nor equally spaced, preventing the expansion of the derivatives 

using Taylor-series. There is no mechanism to convert higher order derivatives to lower 

ones, so the finite volume method is best suited to primitive variable problems where the 

viscous terms are not dominant. Further, curved cell boundaries are difficult to 

implement. As a result, cell boundaries are typically represented as straight and gridlines 

are piecewise straight; improved representation is possible but is complicated. The finite 

volume method is typically only second-order accurate  [25].  
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 The third major discretization system is the method of finite differences. This method 

is based on replacing the partial derivatives in the governing equations with algebraic 

quotients to develop a system of algebraic equations that can be used to solved the flow-

field variables at specific, discrete grid points in the flow [25].  The computational grid 

covers the solution domain and its boundaries over both time and space. The time interval 

of the solution can have either uniform or variable step sizes, however the upper limit of 

Δt is set by requirements for accuracy and numerical stability of the system [24]. In the 

space domain, the grid spacing can be either constant to form a structured grid that is 

traditionally used in the finite difference method or can be nonuniform to form a 

clustered or stretched grid which allows for greater geometric flexibility in the solution 

[24]. The nodes of the system are placed at the intersections of the grid system and 

indexed to identify each grid point. The partial derivatives are approximated between the 

nodes using numerical methods such as a Taylor series expansion. Other more complex 

approximation schemes can be more accurate and allow for higher order differentiation 

for different problems.  

In explicit schemes, the dependent variable is obtained from known results which 

allows for simple set-up and programing of a CFD model. However, explicit systems 

often require small time and space steps to maintain stability in the solution, which can 

result in long computation times. Implicit finite difference solutions are also possible and 

consist of an unknown expressed in terms of known and unknown variables. This results 

in a system of algebraic equations with unknown variables that can be solved for 

simultaneously. Implicit systems allow for greater stability and are often able to take 

fewer steps to solve a system and thus require less computation time; however, these 
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systems are complicated to set-up and program, require very large matrix manipulations 

at each time step. Additionally, implicit schemes often utilize larger time, or pseudo-time, 

steps which result in larger truncation errors and are more computationally expensive per 

step. [24], [25]. 

 For the purposes of this project, ANSYS Fluent was used to execute the CFD analysis 

for the system and the software uses a finite volume discretization approach. ANSYS 

Fluent allows for one of two numerical methods to be used: a pressure-based solver 

developed for low-speed, incompressible flows and a density-based solver developed for 

high-speed, compressible flows. It should be noted that both methods have been 

expanded to operate for a wide range of flow conditions beyond their original design 

[28]. Using both methods, ANSYS Fluent solves the governing equations for mass, 

momentum, and energy conservation and other necessary scalars with a control volume 

technique. This technique divides the domain into discrete control volumes, then 

discretizes the governing equations over each control volume for the dependent variables, 

and finally linearizes the system to yield updated values of the dependent variables [28].  

2.5 Flow Models  

In studying the flow, it is important to characterize the flow behavior and match the 

models to the appropriate laminar or turbulent flow behavior. The can be quantitatively 

assessed by using the Reynolds number, Re, for the flow which is defined as a function of 

density (ρ), viscosity (μ), flow velocity (u), and length scale (L) as follows [26], [27]:  

𝑅𝑅𝐷𝐷 =  
𝜌𝜌𝑢𝑢𝜌𝜌

𝜇𝜇
 

11 
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At low Reynolds numbers, flows are dominated by laminar flow behavior. Laminar flow 

is characterized by smooth, sheet-like flow patterns [26]. Alternatively, at high Reynolds 

numbers, the flow is dominated by turbulent behavior which is characterized by chaotic 

eddy currents that redistribute the momentum of the flow and induces irregular mixing 

[24], [26].  

 While laminar flow is well modeled with the governing equations of fluid dynamics, 

turbulent flow requires modifications and additional calculations to the basic equations. 

Through the electromagnetic levitation project, a range of different models have been 

explored including enhanced-viscosity models, the k-ε model, and direct numerical 

simulations, but these models are not suitable to obtain realistic velocity field in the drop 

[29]. In the k-ε model, the effective turbulent kinematic viscosity is locally estimated via 

calculations of the turbulent kinetic energy and the turbulent rate of dissipation. With 

additional transport equations, empirical constants are applied to the system and assumed 

to be universal and geometry-independent [29]. However, work prior to that presented by 

Berry used the k-ε model to estimate the dynamic viscosity in levitated drops and while 

correctly showed a reduction in the turbulent eddy viscosity near the surface of the drop 

but also showed an incorrect increase in the turbulent eddy viscosity near the azimuthal 

axis and droplet center [29], [30].  

Modifications to the k-ε model have greatly improves the accuracy of the simulations 

[29]. The renormalization group (RNG) method has become a commonly used 

modification and is the turbulent model used by ANSYS Fluent for these simulations 

[31]. The RNG k-ε model improves upon the standard k-ε model by adding an additional 

term to the turbulent dissipation equations, including the effect of swirl, analytically 



20 

 

calculating the turbulent Prandtl numbers, and analytically deriving the effective 

viscosity to make the method more accurate and reliable for a wider class of flows [31]. 

The RNG method uses dynamic scaling and invariance with iterated perturbation 

methods to re-evaluate the transport coefficients and equations [32]. This is done by 

iteratively averaging an infinitesimal band of small scale fluctuations until the viscosity 

becomes scale independent [29], [32]. This method can be applied to both high and low 

Reynolds number flows without requiring wall functions or additional constants in the 

governing equations while also allowing for variability in the Reynolds stresses over the 

domain [29], [32]. 

The turbulence models predict lower flow velocities and lower Reynolds numbers 

than are predicted by the laminar models. In the transitional region, this can result in the 

turbulence model predicting flow below the critical rate for turbulent flow; however, if 

the laminar model is characterized by a Reynolds number above the transition, the 

turbulent model should be used. For the simulations, it was determined by Berry that the 

RNG k-ε model is most applicable to the EML because it is most qualified for Reynolds 

numbers that are relatively low when compared to fully developed turbulent flows that 

are characterized by Reynolds numbers on the order of 104 – 105. However, for the 

purposes of EML analysis, these comparatively low Reynolds number flows that are 

characterized by Reynolds numbers of several hundred to several thousand will be 

considered turbulent. These flows do demonstrate the chaos, mixing, and vorticity 

characteristic of turbulent flow. However, since the largest eddies are constrained by the 

free surface of the drop, the flow cannot reach fully-developed, isotropic turbulence. 
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Prior work has been done comparing the different turbulence models in levitated 

drops has found that the RNG k-ε model has excellent agreement with laminar models 

were expected. The RNG model is able to predict non-uniform turbulent eddy viscosity, 

as expected, and predict smaller, localized turbulent eddies [29]. More recent work was 

able to further validate this model by comparing the predicted convection velocity on the 

surface of the drop with the velocity of tracer particles on the surface of undercooled 

Co16Cu84. This work found that the predicted velocity was in excellent agreement with 

the observed experimental results of approximately 30 cm/s [33].  
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CHAPTER 3 

MODEL SET-UP 

ANSYS Fluent is a powerful computational fluid dynamics tool used to solve the 

fundamental governing equations of fluid flow. The models are set up to use the pressure-

based solver, in a two-dimensional geometry with axisymmetric space and the solution is 

assumed to be at a steady time state. The mesh system used is shown in Figure 5. 

 

Figure 5: The structured mesh is shown above. This mesh includes 550 orthogonal cells. 

The environment of the drop being modeled is a vacuum with an electromagnetic 

force field applied to the drop. The force field is determined based on the experimental 

parameters of the EML system: the geometry of the sample, conductivity of the sample, 

geometry of the levitation coils, the applied current and the applied frequency.  A 
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preexisting program  uses a volume integral to solve for the profile of the electromagnetic 

force field numerically [34], [35]. The force vectors are applied to the mesh in ANSYS 

Fluent using a User Defined Function (UDF).  

There are several assumptions that define the computational boundary conditions that 

must be satisfied in the solution. First, the flow cannot cross the free surface of the drop, 

nor the symmetry axis. Additionally, the free surface of the drop is free of traction. 

Finally, the derivatives must be zero at the axis of symmetry to maintain symmetry at the 

boundary. With these boundary conditions applied to the system, the SIMPLE-Consistent 

algorithm, which increases the under relation to reach convergence more quickly, is used 

to solve the pressure-velocity coupling [36]. The gradient spatial discretization is done 

using the Green-Gauss Node Based method. The pressure spatial discretization is done 

using the Body Force Weighted method, while the momentum spatial discretization is 

done with the second order upwind system. When needed, a high order term relaxation 

can be used to reduce numerical instabilities in the solution.  
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CHAPTER 4 

MODEL VALIDATION 

The model was tested against both a recent experiment and a prior model. When 

validating a model against an experiment, it is important to compare both the results and 

the conditions of the experiment as experimental error can create unexpected conditions 

and inaccurate results. However, when validating a model against a model, it cannot be 

assumed that either model is correct. Both models should be judged for correctness and 

accuracy.  

4.1 Experimental Validation 

Using the computational model set-up described in Chapter 3: Model Set-Up, the 

model was validated against a cobalt-copper system tested in the ISS-EML facility [33]. 

In this experiment, the Co-Cu sample was levitated in EML field and melted using 

induction heating. This Co-Cu alloy was used in this experiment to take advantage of the 

metastable miscibility gap. With sufficient undercooling, the Co-Cu alloy experiences a 

liquid phase separation in which Co-rich particles can be traced to measure the 

convection velocity on the surface of the drop [33]. These Co-rich particles were then 

used as tracers to estimate the convection velocity on the surface of the drop near the 

equator. The model was validated using a mesh based on the detected geometry of the 

experiment with 987 nodes and 936 2D quadrilateral elements. The properties of molten 

copper at the test temperature were used as the properties of the liquid since in the molten 

state the Co-Cu becomes primarily 92 at% Cu-rich liquid with Co-rich particles [33]. As 

described above, ANSYS Fluent was used to solve the Naiver-Stokes equations with the 

electromagnetic forces calculated as part of a user defined function applied to the drop. 
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The results of the computational model and the experimentally observed flow velocity 

were both approximately 30 cm/s with a 7% discrepancy, which was comparable to the 

experimental uncertainty.  

4.2 Validation against prior models  

In addition to the experimental validation, the models were validated against a 

published model used to study convection in containerless processing of iron-chromium-

nickel samples. This prior model was set-up to relate the current applied to the levitation 

coils and the flow velocity in the 

droplet. The model was tested against 

a test case in which 150 A was applied 

to the positioner coils and 0 A was 

applied to the heater coils. Using 7011 

kg/m3 as the density and 5.60 mPa·s 

for the viscosity, the prior model gave 

a maximum velocity of 1.9 cm/s, as 

can be seen in Figure 6 [7].  

Using these given properties and 

the EML field conditions from the 

prior model, the new model was tested. 

The current model predicted the 

maximum flow velocity in the drop to 

Figure 6: Fluid flow in positioner-dominated 

EML flow in FeCrNi droplets. The flow is 

driven by the 150A positioner current and 0 A 

heater current. It can be seen, that the flow is 

directed outward at the equator as a result of the 

distribution of the magnetic field [7] 
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be 2.48 cm/s, which can be seen Figure 7. The results give qualitative agreement to the 

prior published model. In both models the flow is fastest on the surface of the drop; 

however, current models report the velocity of the flow based on interpolations from 

nodes below the surface which 

may account for the 

discrepancies between the 

previously published model 

and the present iteration. 

Furthermore, the present model 

is based on the one reported in 

[30], which is the one validated 

against experiment. 

Figure 7: Results of applying the new model to the prior FeCrNi sample conditions. The 

maximum velocity is 2.48 cm/s and occurs along the surface of the drop. 
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4.3 Convergence and mesh testing  

The initial test case analysis was done using the mesh system shown Figure 5 which 

has 550 cells. The convergence of the solution was evaluated with respect to both the 

accuracy of the solution and the number of iterations. The solution value with the 

convergence requirement is plotted in Figure 8. At increasingly refined requirements for 

the convergence, the iterations required to reach the solution and the computation time 

increases. Using a tighter criterion for convergence increased the predicted maximum 

velocity by 0.2%.  For the simulations presented here 0.001 was used as the convergence 

criterion.  

In addition, new meshes were made and analyzed to explore the sensitivity of the 

mesh. Several of these are given in Figure 10. The meshes are distinguished from one 

another by the number of divisions along the radius of the drop with several key 

characteristics being shared across the different meshes. At the center of the mesh is an 

equilateral hexagon used to balance the requirement for elements of equal size and 

minimal distortion from 90° faces with the shape of the spherical drop. Radiating out 

from the hexagon are quadrilateral cells toward the surface of the drop. The radial 

mapping is more concentrated near the poles of the drop to better resolve the circulation 

loops in this region. Figure 9 shows the converged solution as a function of the number of 

nodes in the mesh.   
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Figure 9: Solution convergence plotted against the number of nodes in the mesh. 
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a . 

d . b

c . 

Figure 10: Meshes tested at various levels of refinement: a.) 20 divisions along the 

radius, b.) 30 divisions along the radius, c.) 40 divisions along the radius, d.) 50 

divisions along the radius. 
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CHAPTER 5 

ALUMINUM-NICKEL ALLOY 

Sample 2 in batch 2.1 of the EML project is an Al75Ni25 alloy. This AlNi sample was 

part of a series of solidification studies in which a qualitative understanding of the 

internal flow behavior during cooling and solidification was needed. This sample is 

527.24 mg and has a diameter of 6.5mm [37]. This alloy was expected to have a liquidus 

temperature at 1398K and a solidus temperature at 1132K [37], [38]. Our partners asked 

us to evaluate cycles 3 and 5 of those run on the Al75Ni25 sample on the ISS.  

5.1 Alloy Properties  

There are several properties that are important to modeling the flow within the drop 

as a function of the applied control voltage. These properties include the electrical 

conductivity of the liquid, the density of the liquid, and the viscosity of the liquid. The 

conductivity of the melt is used to determine the how strongly the electromagnetic field 

acts on the liquid sample. Prior work by Egry found the electrical conductivity of this 

liquid aluminum-nickel alloy to fit the equation given in Equation 12 [35]:  

𝜎𝜎(𝑇𝑇) = 10165 + 0.59(𝑇𝑇 − 𝑇𝑇𝑙𝑙)      [Ω−1𝜋𝜋−1] 

12 

Prior work done by Egry also studied the density of the liquid using containerless 

processing and a single color pyrometer calibrated to the liquidus temperature [35]. Using 

image analysis, the volume of the sample was measured with the assumption that the 

sample was axially symmetric. The density was then calculated using the known mass 
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and measured volume. The density as a function of temperature was then fit to the linear 

relationship given in Equation 13:  

 

𝜌𝜌(𝑇𝑇) = 3.59 − 4.2𝑥𝑥10−4(𝑇𝑇 − 𝑇𝑇𝑙𝑙)     [𝑔𝑔/𝑐𝑐𝜋𝜋3] 

13 

The viscosity of the aluminum-nickel alloy was also measured in the prior work using 

an oscillating cup viscometer at several different temperatures. From the data taken, the 

behavior of the viscosity as a function of temperature was found and fit to a linear curve 

as follows in Equation 14 [38]:  

 

𝜂𝜂(𝑇𝑇) = 7.94 − 0.0034 ∗ 𝑇𝑇     [𝜋𝜋𝑚𝑚𝑚𝑚 𝑠𝑠] 

14 
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5.2 Results and Discussion 

Using the model set-up described in Chapter 3: Model Set-Up, the fluid flow in the 

drop was modeled at the sample’s maximum temperature during heating and throughout 

cooling. The applied, control voltage and temperature are plotted for these cycles in 

Figure 11. During heating the positioner and heater coils apply a combined 

electromagnetic force field to the drop that controls the drop’s position and heats the 

sample through induction heating. The heating coils dominate the electromagnetic field 
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Figure 11: Positioner and heater voltages overlaid with the calibrated temperature of the AlNi 

drop during cycle 3 of the ISS MSL-EML tests during Batch 2.1. For both cycle 3 and cycle 5, 

the sample is heated and coils are reduced to allow the sample to cool after reaching peak 

temperature.  
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applied to the drop which acts as the primary driver of flow in the sample. The resulting 

field is shown in Figure 12. The aluminum-nickel alloy sample was analyzed in two 

cycles with different maximum temperatures. The first cycle modeled (Cycle 3) reaches a 

maximum temperature of 2050 K and the second cycle modeled (Cycle 5) reaches a 

maximum temperature of 1785 K.  

Figure 12: The EML field applied to the AlNi sample during the heating phase  

of cycle 3 and 5. 
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These conditions were used to simulate the flow within the drop at the maximum 

temperature during heating to observe the maximum flow that occurred during the cycles. 

The resulting heater driven flow pattern is given in Figure 13. This flow pattern is 

consistent between the different cycles and different flow models. The maximum 

velocities resulting from these simulations are given in Table 2 and the calculated 

Reynolds numbers are given in Table 3. The high Reynolds numbers indicate that under 

these conditions the flow is highly turbulent.  

 

Figure 13: Heater driven fluid flow in the AlNi sample. This shows the flow model 

calculated using the laminar flow model, heater dominated EML field, and the liquid is 

assumed to be at 2050K. This flow pattern is consistent across AlNi heating conditions. 
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Table 2: Modeled maximum flow velocities for cycle 3 and cycle 5. 

 Cycle 3 Cycle 5 

Cycle High Temperature 2050K 1785K 

Laminar Model 1.00 m/s 0.739 m/s 

RNG k-ε Turbulence 

Model 

0.449 m/s 0.432 m/s 

 

Table 3: Reynolds numbers calculated for the maximum flow under heating. 

 Cycle 3 Cycle 5 

Cycle High Temperature 2050K 1785K 

Laminar Model 22200 8670 

RNG k-ε Turbulence 

Model 

9990 5070 

 

During cooling, the control voltage on the heater coil is reduced to zero and the control 

voltage for the positioner coil is reduced. The reduced electromagnetic field during 

cooling is given in Figure 14. In Cycle 3, the sample cooled and recalesced at 1077 K 

while cycle 5 experienced its recalescence at approximately 1150 K. The positioner 

driven flow that occurs during cooling and immediately prior to recalescence is shown 

Figure 15. The models of the flow prior to recalescence were analyzed for both cycles 
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using the laminar model and RNG k-ε turbulence model.  The calculated maximum 

flow results are given in Table 4 and the calculated Reynolds numbers  for the flow 

are given in Table 5. Under both models the Reynolds numbers are well below 600, 

which indicates that the flow is likely laminar immediately prior to recalescence. 

  

 

 

 

Figure 14: The positioner-dominated electromagnetic field is shown. The heater voltage 

is zero V and the positioner voltage is 9.7 V.  This field is applied to the drop during the 

entire cooling phase of the cycles. 
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Table 4: Maximum flow velocity calculated in the drop under positioner dominated flow 

immediately prior to recalescence. 

 Cycle 3 Cycle 5 

Cycle Recalescence Temperature 1077K 1150K 

Laminar Model 0.0530 m/s 0.0545 m/s 

RNG k-ε Turbulence Model 0.0390 m/s 0.0395 m/s 

 

Table 5: Reynolds numbers calculated to characterize the flow in the EML drops 

immediately prior to recalescence under positioner dominated flow. 

 Cycle 3 Cycle 5 

Cycle Recalescence Temperature 1077K 1150K 

Laminar Model 300 325 

RNG k-ε Turbulence Model 220 236 
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Figure 15: This is the fluid flow pattern for positioner dominated flow that occurs during 

the cooling phase of the cycle. This particular pattern is calculated from the laminar flow 

model in a positioner dominated EML field. The properties of the liquid were calculated 

using 1077K as the temperature.  
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In addition to the maximum and minimum flow conditions of the cycles, the flow was 

also analyzed using the laminar and turbulent flow models over a range of different 

temperature conditions.  Laminar flow models were evaluated across the temperature 

range. Using the laminar flow model, the Reynolds number for the flow increased above 

600 at temperatures slightly higher than 1600K. This indicates that the laminar-turbulent 

transition is occurred above 1600K. At higher temperatures, the RNG k- ε turbulence 

model was used to estimate the flow behavior. The relationship between the temperature 
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Figure 16: Reynolds numbers vs temperature of the molten sample during cooling. Above 

Reynolds numbers of about 600, shown with a dotted line, [16], the flow will be turbulent 

and the curved marked by triangles is applicable. Below this value the flow will be 

laminar, and the curve marked by the squares applies.  
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and the Reynolds numbers for the different flow models is shown in Figure 16. These 

models used the thermophysical properties as a function of temperature to determine the 

maximum velocity within the drop at the given temperature. These values were then used 

to calculate the Reynolds number describing the flow. 

5.3 Conclusion    

Though the fluid flow models run on the aluminum-nickel alloy sample, an improved 

understanding of the flow during cooling and solidification was gained. In both Cycle 3 

and Cycle 5, the highest temperatures of the cycles were modeled to display clear 

turbulent behavior. However, it is clear at the time of recalescence the flow transitions to 

a laminar behavior model. Based on previous work, the laminar-turbulent transition has 

been shown to occur near a Reynolds number of 600. Lacking clear video evidence of the 

behavior of the flow in the sample, these simulations provide the only insight into the 

nature of the flow.   

The RNG k-ε model should be used when the Reynolds number is greater than 600, 

which corresponds to temperatures greater than 1600 K. Laminar flow models should be 

used when the Reynolds numbers for the flow is less than 600, which corresponds to 

temperatures less than 1600K. 
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CHAPTER 6 

GERMANIUM 

6.1 Experiment Overview 

As part of the ISS-EML experiments, the thermophysical properties of liquid 

germanium were observed to correlate changes in the X-ray structure factor along with 

changes in properties to possible phase transitions proposed in supercooled silicon [37]. 

The antimony-doped germanium sample was processed as part of batch 2.1 in the ISS-

EML. The 8mm diameter sphere sample consists of germanium doped with antimony at a 

Figure 17: Temperature and control voltage data gathered during the  

doped germanium cycle. 
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concentration of 1019/cm3. It was 

melted and oscillations were induced to 

study the properties of the liquid 

germanium; after which the sample was 

allowed to cool. The sample 

temperature, as measured by the 

pyrometer, plotted with the control 

voltages of the heater and positioner 

coil is given in Figure 17. 

During the cycle oxide rafts are 

visible floating on the surface of the 

drop and provided an opportunity to 

qualitatively observe the behavior of 

the flow. The oxide rafts get caught in 

the stagnation lines of the flow. If the 

flow were to be laminar in the drop, the 

oxide rafts would have followed stable, 

linear patterns though the droplet. 

However, when the flow is turbulent, 

these rafts reflect the turbulent behavior 

of the flow and display a chaotic 

motion. This chaotic motion of the 

oxide rafts is seen throughout the video 

Figure 18: A-C: During cooling, the 

germanium sample displayed clear turbulent 

behavior that can be observed through the 

movement of the oxide rafts on the surface of 

the drop.  
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of the processing cycle and suggests that the flow within the drop is turbulent over the 

observation period. Shown in Figure 18 A-C is a series of images of the oxide rafts 

shortly before recalescence, when the temperature of the drop is at its lowest temperature. 

The behavior reflected here illustrates the chaotic motion that would be expected from 

turbulent flow. This turbulent response to the EML field is surprising because typical 

positioner-driven flow is generally laminar and undercooled samples are usually laminar; 

however, the kinematic viscosity of germanium is several orders of magnitude lower than 

that of other samples studied in EML. The lower kinematic viscosity is thought to be the 

cause of the high levels of turbulence observed in the sample.  

6.2 Material Properties  

As with the aluminum-nickel sample, the conductivity, density and viscosity are all 

necessary to model the flow within the drop. The electrical conductivity is necessary to 

determine the applied electromagnetic field to the drop. The conductivity of liquid 

germanium has been measured to be 1.52x106 Ω-1m-1 at 1250 K using a modified 

oscillating coil system [39]. The high conductivity of the melt allows for the sample to be 

levitated and heated using the electromagnetic field.  

The density of the molten germanium is important to solve the fluid flow equations in 

the simulations. Historical work has measured the density of liquid germanium as a 

function of temperature according to the following relationship [40]:  

𝜌𝜌𝑙𝑙𝑖𝑖𝑙𝑙 = (5.49 ∗ 103) − 0.49(𝑇𝑇 − 𝑇𝑇𝑚𝑚) 

15 

More recent work has measured the density and thermal expansion of pure liquid 

germanium using contactless processing methods in microgravity. In Luo’s study of 
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contactless processing of SiGe-melts, the density of pure, liquid germanium was 

measured to be 5570 kg/m3 at 937°C and the volumetric thermal expansion was observed 

to be 10.1x10-5 °C-1 

[41].  

Comparing the 

observations in the 

parabolic flight 

experiment and the 

historical 

measurements, there 

is a 2.3% difference 

in density at the temperature of interest. For the purposes of these models, this is an 

acceptable error. In creeping flow at steady state, the density has no effect on the velocity 

of the fluid. In fast flows where the convective term is large, the convective term scales 

with the constant force. As a result, the velocity scales with the square root of the 

reciprocal of the density. Applying our given variation of 2.3%, this would be expected to 

yield a 1.1% difference in the velocity of the system. 

The viscosity is a critical material property to determine how the flow will respond to 

the force of the electromagnetic field and the magnitude of the flow velocity. The 

viscosity of liquid germanium has been measured by multiple sources [41]–[43]. In 

recent experiments on the ISS, the viscosity of liquid germanium was measured to be 2.9 

mPa-s based on the oscillating drop method [42]. However, this measured viscosity is 

significantly lower than that of previous parabolic flight experiments using the same 
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oscillating drop method. In the parabolic flight experiments, the viscosity was measured 

as a function of the damping rate of the oscillations and the data was fit to an Arrhenius 

relation [41]:  

𝜂𝜂 =  𝜂𝜂𝑜𝑜𝐷𝐷�𝐸𝐸𝐴𝐴
𝑘𝑘𝑘𝑘� 

16 

In which the viscosity at the high temperature limit, η0, is given as 5 mPa s and the 

activation energy is given to be about 90-100 meV at high temperatures. Based on this, 

this viscosity at our target temperature would be expected to be between 12.4 and 13.6 

mPa-s [41].  

 This viscosity of liquid germanium has also been measured by Gruner, et al., using 

the rotating cup method [43]. This method is less susceptible to inducing turbulent flow 

that would dampen the oscillation and provide erroneous results. Furthermore, any 

experimental problems due to secondary or turbulent flows would increase the apparent 

viscosity, so the measured value is a maximum. Gruner found that the Arrhenius-law 

could be applied to the measurements of viscosity. The measured asymptotic viscosity for 

undoped germanium was given as 0.206 mPa-s with an activation energy as 7.60 kJ/mol 

[43]. Based on this viscosity fit, it would be expected that at the temperature of 

recalescence, the viscosity of the drop would be 0.455 mPa-s.  

 The value for the viscosity using Gruner’s fit is an order of magnitude lower than that 

reported by the ISS-EML experiments and is two orders of magnitude lower than the 

viscosity reported in the parabolic flight experiments [41]–[43]. However, the 

measurement method is less susceptible to errors due to turbulence which is expected in 
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the drop based on the video of the experiment. Additionally, estimates taken from prior 

measurements on liquid silicon, which is in the same period of the periodic table and has 

the same electron structure, suggest that the viscosity should be close to the range of 0.49 

and 0.90 mPa-s [44]–[46].  

6.3 Model Results  

The flow conditions in the droplet were modeled at the maximum temperature 

achieved by the liquid metal to determine the maximum flow velocity achieved in the 

drop and to characterize the flow. These conditions occur during the heater driven flow 

immediately before the current applied to the heater coils and positioner coils is reduced 

and the sample is allowed to cool. The electromagnetic field applied to the drop let is 

Figure 20: EML field applied to the germanium sample during heating.  
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shown in Figure 20 which results in the heater driven flow pattern in Figure 21. The 

model was run to assess both density models with Gruner’s viscosity model; the resulting 

maximum flow velocities are given in Table 6 with the corresponding Reynolds numbers 

that describe the flow. The excessively high Reynolds numbers agree with the 

observations in the video that indicate the flow is very turbulent under these conditions.  

 

Figure 21:  Heater-dominated flow within the germanium sample resulting from the 

applied EML field and high temperature liquid property conditions. 
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Table 6: Maximum velocities and Reynolds numbers calculated to describe the flow 

within the sample at the cycle high temperature using the applied EML field and the 

Gruner viscosity model. 

 Maximum Flow Velocity (m/s) Reynolds Number  

Luo Density 0.657 69,400 

Iida Density  0.623 72,700 

 

The flow immediately prior to recalescence was also of interest to collaborators. 

During cooling the flow was driven by the positioner coils. The electromagnetic field 

during cooling is shown Figure 22. This field was applied to the property conditions 

expected at the recalescence temperature and the model simulated the positioner driven 

flow pattern given in Figure 23. The resulting maximum flow velocities and the 

corresponding Reynolds numbers for the different property models are shown in Table 7. 

The calculated Reynolds numbers provide strong indication in support of the video 

evidence that the flow in the drop prior to recalescence is highly turbulent.  

 

Table 7: Maximum velocities and Reynolds numbers calculated to describe the flow 

within the sample under the reduced electromagnetic field and using Gruners viscosity 

model. 

 Maximum Flow Velocity (m/s) Reynolds Number 

Luo Density  0.0658 6600 

Iida Density 0.0663 6450 
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Figure 22: Applied electromagnetic field to the germanium sample during cooling. 

Figure 23: Fluid flow pattern calculated for the germanium sample immediately 

prior to recalescence using the turbulent flow model. 
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6.4 Conclusions 

  Based on both models for the flow within the droplet and video evidence, the flow 

within the droplet is highly turbulent in all conditions experienced in the EML 

experiment we analyzed. As the parabolic flight experiments usually use even higher 

positioning currents, the flow there was likely turbulent as well. Therefore, these 

experiments should account for the turbulence when interpreting the results, particularly 

of oscillation measurements. 
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CHAPTER 7 

TI39.5 ZR39.5 NI21 

Current work is exploring solidification and the thermophysical properties of various 

Ti-Zr-Ni alloys [37] with special interest focusing on the formation of quasicrystal and 

glass formation [47]–[49]. For compositions near 21 at% nickel, a metastable quasicrystal 

structure forms during solidification instead of a more stable Laves phase [47].  Recent 

work by collaborators has explored the formation of quasicrystals as determined by the 

structure of the melt and have found correlations between the nucleation barrier and the 

presence of icosahedral short range order [47]. While several models for solidification in 

complex alloys are being explored, the coupled-flux nucleation model is of particular 

interest because it directly relates diffusive and interfacial flux of species in the melt [50], 

[51]. The coupled-flux nucleation model is discussed further in Chapter 2.3: Fluid Flow 

and Solidification Studies. However, further study of this models requires that solute 

gradients in the melt be controlled by diffusion and not shear in the melt.  

Current work is using Ti-Zr-Ni as a case study for the coupled-flux nucleation model 

and requires the quantification of the internal flow within levitated drops. Ti39.5Zr39.5Ni21 

was processed in batch 2.1 of the ISS-EML campaign to study the solidification and the 

thermophysical properties of the melt [37]. The work presented here provides an analysis 

of the fluid velocity and shear rates in the melt near recalescence with additional details 

on the analyzed cycles available in [52]. The flow was modeled using the methods 

described in Chapter 3 to calculate the flow velocity, Reynolds number and shear-strain 

rate during cooling.  
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7.1 Material Properties  

The Ti39.5Zr39.5Ni21 sample processed in the ISS-EML facility is 6mm in diameter. 

This alloy was expected to have a liquidus at 1093K and achieve 150K undercooling 

[37].  

 Recent work in ESL was used to measure the density, conductivity, and viscosity of 

this alloy [53]. The conductivity of the melt was approximated to be 6.49 S/m over the 

temperature range of interest. During the work by the Kelton group [53], the density of 

the melt was measured and fit the following trend:  

𝜌𝜌 = 6.1927 − 0.000287𝑇𝑇 (𝑔𝑔/𝑐𝑐𝜋𝜋3) 

17 

The recent viscosity measurements in ESL by the Kelton group [53] (KFK), have been 

compared to prior measurements and fits of the viscosity using an Arrhenius and VFT fit. 

The results are shown below in Figure 24, in which the KFK ESL measurements are 

plotted in blue, the Arrhenius fit to Bradshaw’s data is given in orange, and the VFT fit to 

Bradshaw’s data is plotted in grey. For the purposes of extrapolating the ESL data, the 

VFT fit to Bradshaw’s measurements was used as is given in Equation 18 [54].  

𝜇𝜇 =  𝜇𝜇0 ∗ 𝐷𝐷𝑥𝑥𝑝𝑝 �
𝐷𝐷𝑇𝑇0

𝑇𝑇 −  𝑇𝑇0
� = 0.00225 ∗ exp �

1.88 ∗ 686.25
𝑇𝑇 − 686.25 

� 

18 
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Figure 22: The KFK ESL viscosity measurements are plotted over the range of cooling 

with both Arrhenius and VFT fits as published by Bradshaw [54]. 

7.2 Model Results 

Our collaborators requested 9 different experimental cycles be analyzed from the 

ISS-EML processing. From these 9 cycles, 6 unique models were run to analyze the flow 

during cooling through the recalescence. The processing conditions for each cooling cycle 

are given in Table 8. Cycles 49 and 50 were processed under identical experimental 

conditions and were therefore modeled as one cycle over an extended temperature range. 

This was also done with cycles 65 and 66, as well as cycles 55 and 62.  
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Table 8: Experimental parameters for the ISS-EML used to control the Ti39.5Zr39.5Ni21 

sample during the cooling phase of the cycles.  

Cycle Number  Heater 

Voltage 

Positioner 

Voltage 

Heater Oscillating 

Amplitude  

Positioner 

Oscillating 

Amplitude  

Cycle 11 0.00 5.71 17.5 188.9 

Cycle 49 0.00 3.87 17.5 137.1 

Cycle 50 0.00 3.87 17.5 137.1 

Cycle 64 0.00 3.99 17.5 140.5 

Cycle 65 0.00 9.39 17.5 292.9 

Cycle 66 0.00 9.39 17.5 292.9 

Cycle 53 0.01 5.71 19.2 188.9 

Cycle 55 0.00 5.71 17.5 188.9 

Cycle 62  0.00 5.71 17.5 188.9 

 

By evaluating the models with the EML force field conditions specified in Table 8 

the flow parameters were calculated and the results for the cycles at the recalescence 

temperature are presented in Table 9. It can be seen in the table that all the cycles 

modeled where well below the laminar-turbulent transition. The Reynolds numbers are 

much less than 600, clearly indicating laminar flow [16]. In addition, the shear-strain rate 

at the recalescence temperature is also presented in Table 9.  
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Table 9: The summary of the calculated flow parameters near the recalescence 

temperature. 

Cycle Number Recalescence 

 Temperature (K) 

Maximum 

 Velocity (m/s) 

Reynolds 

 Number 

Shear-strain 

Rate  

Cycle 11 990 0.00119 0.23 2.89 

Cycle 49 and 50 980 0.00128 0.25 2.52 

Cycle 64 1030 0.00242 0.89 4.87 

Cycle 65 and 66 1020 0.00284 0.94 8.07 

Cycle 53 1030 0.00263 0.97 6.15 

Cycle 55 and 62 1020 0.00210 0.69 5.02 

  

During cooling the flow was analyzed using the EML field to calculate the velocity 

and shear-strain rate in the drop. Figure 26 show the velocity on the left and the contours 

of the shear-strain rate in the drop as calculated for conditions immediately prior to 

recalescence in Ti39.5Zr39.5Ni21 for cycle 11. Over the temperature range of interest, the 

flow was characterized by Reynolds numbers much less than the expected laminar-

turbulent transition at 600 for all modeled cycles. The evolution of the flow in cycle 11 is 

shown in Figure 25 for Bradshaw’s Arrhenius fit and VFT fit [54] and the viscosities 

measured in more recent work. This laminar flow behavior is consistent across all cycles 

of interest in this sample.  
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Figure 23: Reynolds numbers characterizing the flow during cooling in cycles 11 based on 

the maximum flow velocity using Bradshaw's Arrhenius fit, Bradshaw's VFT fit, and the 

KFK ESL measurements. 
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For the shear rate in the sample, science requirement document (SRD) specifies 

“Using an estimate of the critical cluster density for steady-state obtained from the coupled-

flux modeling (§3.7), clusters will be separated by d = 1 μm – 0.1 μm, if uniformly spaced. 

For the cooling rate of approximately 10 °C/s, they should remain apart for at least td =1 s 

to avoid convective contamination in the evolution of the cluster distribution. The 

maximum allowed shear-strain rate to avoid collisions between the diffusion fields of the 

critical nuclei is d/(td*2L), or 5 – 50 s-1. These are upper limits, given the uncertainties in 

the assumptions inherent in this estimate. Further, cluster evolution is governed not only 

Figure 24: The fluid flow calculated using the cooling conditions during cycle 11 and 

modeled using the materials properties of Ti39.5Zr39.5Ni21 at 980K. The velocity profile is 

shown on the left in which the maximum flow velocity is 1.190x10-3 m/s. The shear-

strain rate contours are plotted on the right in which the peak strain rate is 2.9 s-1 near the 

poles of the sample; however, most of the sample is below 1.2 s-1. 
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by the critical size clusters, but by the entire cluster population, leading to a much smaller 

estimate on the cluster separation. A rate that is two orders of magnitude less (0.05 – 0.5 s-

1) than the above estimate, is, therefore, deemed necessary to assure a diffusion-controlled 

experiment.” [55]. These parameters were determined for Ti39.5Zr39.5Ni21 by Kelton, 

however, the actual experimental cooling rates varied from the prescribed 10 °C/s and are 

given below in Table 10. 

Table 10: Cooling rates for Ti39.5Zr39.5Ni21 prior to recalescence and solidification 

Cycle Number Recalescence 

 Temperature (K) 

Shear-strain Rate (s-

1)  

Cooling Rate Prior to 

 Recalescence (K/s) 

Cycle 11 990 2.89 -2.38 

Cycle 49 980 2.52 -3.02 

Cycle 50 980 2.52 -3.02 

Cycle 64 1030 4.87 -30.88 

Cycle 65 1020 8.07 -27.75 

Cycle 66 1020 8.07 -25.48 

Cycle 53 1030 6.15 -2.18 

Cycle 55 1020 5.02 -7.95 

Cycle 62 1020 5.02 -4.43 

 

While the shear-strain rates in the cycles are within the calculated target range for 

cooling rates near 10 °C/s, although not the broader range intended to account for the 

subcritical clusters. Additionally, the cycles did not cool at the assumed rate. Cycles 64-66 

cooled between approximately 2.5 and 3 times faster than was assumed. As a result, the 
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shear-strain rate target needs to be recalculated for these cycles using the larger cooling 

rate. The Kelton group is currently working on these updated calculations. 

 In the other analyzed cycles, the shear-strain rate was within the required shear-strain 

rate based on the nominal calculation but not in the broader range to account for the 

subcritical clusters. However, the cooling rate was significantly lower than the assumed 

target. These cycles should also have the shear-strain rate targets reassessed based on the 

cooling rates achieved in the experiment to ensure that diffusion controlled the effects seen 

during the experiment. 

7.3 Conclusions 

During cooling, the Ti39.5Zr39.5Ni21 sample is calculated to have laminar flow in all 

cycles analyzed over the full range of cooling conditions.  The shear rates were also 

determined to be within the nominal specifications for the specified cooling rates, although 

not within the broader specifications to account for any effects due to subcritical nuclei. 

However, the variation in the achieved cooling rates from the specifications given in the 

SRD may have changed the requirements for the shear-strain rate in the sample at 

recalescence. Calculations should be done for the different cooling rates reassess the 

targeted shear-strain rate and ensure the concentration profiles around subcritical nuclei 

did not interact. 
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CHAPTER 8 

CU50ZR50 

The Cu50Zr50 alloy was chosen to be used in ISS-EML solidification studies for its 

behavior in which the melt solidifies through dendrite growth congruently (without 

constitutional supercooling) [56] making it a useful model to investigate the effects of the 

redistribution of heat along the solidification  front and the atomic attachment kinetics at 

the interface [57] in the absence of a solutal boundary layer. As described for the prior 

systems, models were analyzed in ANSYS Fluent to calculate and quantify the internal 

flow prior to recalescence in a molten Cu50Zr50 alloy processed in Batch 2 of the ISS-EML 

experiments. This sample was processed to take systematic measurements of the growth 

velocity as a function of the undercooling and to measure the thermophysical properties 

necessary to correlate synchrotron structural data and investigate liquid fragility and 

chemical ordering [37], [58].   

There are 2 cycles of interest to our collaborators, cycle 28 and 29, which were defined 

by the same cooling parameters and were therefore modeled together. During the cooling 

phase of the cycle the control voltage applied to the amplifier for the heater was 0.000 V 

which results an oscillating current of 17.5 A and the control voltage applied to the 

amplifier for the positioner was 3.879 V which results in 137.4 A applied by the oscillating 

current. The EML force field during processing is given in Figure 27. 
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Figure 25: Electromagnetic force field calculated for cooling conditions of Cu50Zr50 in the 

ISS-EML facility. The conductivity of the melt is approximated to be 7.05x105 S/m. The 

amperage applied by the oscillating heater current is 17.5A and the amperage applied by 

the oscillating positioner current is 137.4A. 

8.1 Material Properties  

The models use the properties of Cu50Zr50 based on the measurement taken in recent 

work [59]. The electrical resistivity of the melt is estimated to be 1.4184 micro Ohm m 

which corresponds to a conductivity of 7.05x105 S/m over the temperature range of interest. 

The density and viscosity were measured in recent work [53], [59] and the VFT fit was 

applied to the viscosity data, resulting in the constants in Table 11.  

 

𝜌𝜌(𝑇𝑇) = 7635.6 − 0.491𝑇𝑇 (𝑘𝑘𝑔𝑔 𝜋𝜋3⁄ ) 

19 
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𝜇𝜇 =  𝜇𝜇0 ∗ 𝐷𝐷𝑥𝑥𝑝𝑝 �
𝐷𝐷𝑇𝑇0

𝑇𝑇 −  𝑇𝑇0
� 
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Table 11: VFT fit constants for Cu50Zr50 

Constants Fitted Value 

μ0 0.001038 

T0 744.424 

D 1.983 

8.2 Model Results 

Laminar flow models were analyzed with the properties of the melt to determine the 

behavior of the flow as the droplet cooled. The fluid flow pattern for this system is shown 

in the left hemisphere of Figure 28 and the shear-strain rate contour plots are given in the 

right hemisphere of Figure 28 with the results at the recalescence temperature of each cycle 

given in Table 12. In velocity profile, the flow is driven into the drop along the equator and 

returns to the surface of the drop at the poles where the force field is lower.  

In both cycles of interest, the flow was slow and characterized by low Reynolds 

numbers during the entire cooling phase of the cycle. The results are plotted in Figure 29, 

where Reynolds numbers for the flow are much less than the expected laminar-turbulent 

transition of 600 [16]. The evolution of the maximum shear-strain rate in the drop during 

cooling is also plotted in Figure 6.  
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The shear-strain rate is largest near the poles of the sample and is approximately 6x 

larger than the shear-strain rate along the equator of the sample, as is shown in Figure28. 

The maximum shear rate in both cycles is below the shear-strain rate requirements 

calculated for Ti39.5Zr39.5Ni21 cooled at 10°C  [37], [55]. However, both cycle 28 and cycle 

29 of the Cu50Zr50 sample had a cooling rates that were almost an order of magnitude 

slower, given in Table 12. Additionally, the differences in composition of the melt may 

change the chemical and thermodynamic driving forces for nucleation. The shear-strain 

Figure 26: The flow calculated for Cu50Zr50 in the ISS-EML experiments immediately 

prior to recalescence at 950 K. The left hemisphere shows the velocity field in which the 

maximum flow velocity is 2.407x10-4 m/s. On the right side, the shear-strain rate 

contours are plotted for these flow conditions. The maximum shear-strain rate is 0.547 s-1  

with most of the sample below 0.25 s-1.  
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rate target for the Cu50Zr50 sample should be reviewed and recalculated if necessary, to 

ensure that the solidification experiment was diffusion controlled and that the phase field 

of the nuclei clusters did not overlap.  

 

Figure 27: Evolution of flow in Cu50Zr50 during cooling in ISS-EML experiments. 

Table 12: Flow simulation results for Cu50Zr50 cycles 

 Cycle 28 Cycle 29 

Recalescence Temperature (K) 955 965 

Cooling Rate Prior to Recalescence (°C/s) -1.46 -1.71 

Viscosity (Pa s) 1.149 0.837 

Maximum Flow Velocity (m/s) 2.407 3.308 

Reynolds Number  0.0098 0.0184 

Shear-Strain Rate (s-1) 0.5469 0.7515 
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8.3 Conclusions  

Computational fluid dynamics models were analyzed to characterize the flow and 

shear-strain behavior in electromagnetic-levitation experiments on Cu50Zr50 in the ISS-

EML facility. During the entire range of the cooling phase of the experiment, the Reynolds 

number characterizing the flow was well below the known laminar-turbulent transition, 

which indicates the flow to be laminar and slow. Additionally, the shear-strain rate was 

calculated during the cooling phase of the sample. As the sample cooled, the maximum 

shear-strain rate in the sample decreased. At the time of recalescence, the shear-strain rate 

was within the specifications given in the Science Requirement Document for 

Ti39.5Zr39.5Ni21 (which has been used as a basis of comparison since no target rates were 

given for Cu50Zr50); however, the Cu50Zr50 sample had cooled at a significantly slower rate 

than was in the specifications for the Ti39.5Zr39.5Ni21 sample. In evaluating the strain rate in 

this sample against the coupled-flux model for nucleation, calculations should be done for 

Cu50Zr50 at this lower cooling rate to reassess the targeted shear-strain rate and ensure the 

concentration profiles around subcritical nuclei did not interact during the experiment. 
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CHAPTER 9 

VITRELOY 106 

Amorphous metals, or bulk metallic glasses, have been developed to provide high 

tensile strength and high corrosion resistance by preventing the formation of grain 

boundaries [60]. Vitreloy was an early metallic glass that resists crystallization in the 

undercooled liquid state, developed by Prof. W.L. Johnson at Caltech and is licensed to 

the LiquidMetal corporation [61], [62]. Since its development, Vitreloy 106 has been 

widely-studied as a beryllium-free bulk metallic glass; however, measurements on the 

thermophysical properties of the melt have only recently been performed using 

containerless processing techniques [63].  

A Vit106 (Zr57Cu15.4Ni12.6Al10Nb5) sample was processed during batch 1.2 of the ISS-

EML campaign in which the sample was processed to study the nucleation kinetics, 

solidification velocity, thermophysical properties, and behavior of the undercooled melt 

[64]. The work presented here provides an analysis of the fluid velocity and shear rates in 

the melt near recalescence; additional details on the analyzed cycles are available in [65], 

as reported to collaborators. The flow was modeled using the methods described in 

Chapter 3 to calculate the flow velocity, Reynolds number and shear-strain rate during 

cooling. 

9.1 Material Properties  

The models use the properties of Vit106 based on recent measurements work [59], 

[66]. The electrical resistivity of the melt is estimated to be 1.667 micro-Ohm-m, which 

corresponds to a conductivity of 6.00x105 S /m over the temperature range of interest. 

The density and viscosity were measured in recent work [66], [67].   
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𝜌𝜌(𝑇𝑇) = 6816.5 − 0.335𝑇𝑇 (𝑘𝑘𝑔𝑔 𝜋𝜋3⁄ ) 

21 

 The data was fit to both a VFT and KKZNT fit. At low temperatures, the VFT 

viscosity gets very large and the simulations are no longer stable. The form of the VFT fit 

is given below and the constants are provided in Table 13. 

𝜇𝜇 =  𝜇𝜇0 ∗ 𝐷𝐷𝑥𝑥𝑝𝑝 �
𝐷𝐷𝑇𝑇0

𝑇𝑇 −  𝑇𝑇0
� 
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Table 13: VFT Constants for Vit106 

Constants Fitted Value 

μ0 0.001171 Pa·s 

T0 745.090 K 

D 2.501 

 

At low temperatures, the KKZNT fit [67] was used. However, per the request of our 

collaborators who have developed the related theory the KKZNT was not used at 

temperatures above T*. While the KKZNT is not applicable at temperatures above T*, 

over the range of the experiments the differences are small. The form of the KKZNT fit is 

given below and the constants are provided in Table 14. 
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𝜇𝜇 =  𝜇𝜇0 ∗ 𝐷𝐷𝑥𝑥𝑝𝑝 �
𝐸𝐸∞ + 𝑇𝑇∗𝐵𝐵 �𝑇𝑇∗ − 𝑇𝑇

𝑇𝑇∗ �
𝑍𝑍
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Table 14: KKZNT Constants 

Constants Fitted Value 

μ0 0.001231 Pa·s 

E∞ 3833.27 J/mol 

T* 1471.70 K 

B 12.27 

Z 1.701 

 

The viscosity models are plotted over the temperature range of interest with the 

measurements in Figure 30. It can be seen that the viscosity modeled by the KKZNT fit is 

always less than the viscosity modeled by the VFT fit. The following results use the 

KKZNT fit to relate the viscosity to the temperature of the sample in the simulations and 

as a result, the following results are the upper bound of the velocity and shear rate during 

the experiments.  
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Figure 28: Viscosity fits plotted as a function of 1/T, such that high temperatures are on 

the left, and extended over the temperature range of interest.  

9.2 Model Results 

Using the properties of the liquid alloy, fluid flow simulations were run with 

laminar flow models to predict the correlation of the fluid flow with the properties of the 

flow as the droplet cooled. The electromagnetic field are the forces that drive the flow 

patterns.  
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Table 15: Summary of flow simulation results for cycles of interest in Vit106 

 Cycle 1 Cycle 8 Cycle 60 Cycle 68 

Recalescence 

Temperature (K) 

850 850 875 855 

Cooling Rate Prior to 

Recalescence (°C/s) 

1.41 0.85 6.06 19.63 

Viscosity (Pa s) 15.1 15.1 8.37 13.4 

Maximum Flow 

Velocity (m/s) 

1.64x10-5 1.89x10-5 1.45x10-4 2.05x10-5 

Reynolds Number  4.61x10-5 5.32x10-5 7.36x10-4 6.51x10-5 

Maximum Shear-Strain 

Rate (s-1) 

0.032 0.047 0.257 0.049 

 

The flow was calculated and analyzed over the full temperature range of the relevant 

cycles and was found to be characterized by Reynolds numbers much less than the 600 

that characterizes the laminar-turbulent transition. The evolution of the parameters used 

to characterize the flow during cooling is plotted in Figure 31 where it can be seen that 

the Reynolds number and shear-strain decreases with decreasing temperature. The flow is 

shown in the drop in Figure 32 in which the velocity field and shear-strain rate are shown 

for cycles 60, which is representative of all four cycles analyzed for Vitreloy 106.  
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Figure 29: Evolution of flow metrics in Vit106 experiments in ISS-EML using the 

KKZNT viscosity fit over the cooling range of cycle 60. 
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9.3 Conclusions  

Computational fluid dynamics models were analyzed to characterize the flow and 

shear-strain behavior in electromagnetic-levitation experiments on Vit106 in the ISS-

EML facility. During the entire range of the cooling phase of the experiment, the 

Reynolds number characterizing the flow was well below the known laminar-turbulent 

transition, which indicates the flow to be laminar and slow. Additionally, the shear-strain 

Figure 30: Flow calculated for the recalescence conditions during cycle 60 of the ISS-

EML experiments on Vit106. On the left the velocity field is shown in which the 

maximum flow velocity is 1.45x10-5 m/s which gives a Reynolds number of 7.36x10-4. 

The shear-strain rate contour is shown on the right in which maximum shear-strain rate is 

0.257 s-1 with most of the sample below 0.187 s-1. 
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rate was calculated during the cooling phase of the sample. As the sample cooled, the 

maximum shear-strain rate in the sample decreased. At the time of recalescence, the 

shear-strain rate was within the specifications given in the Science Requirement 

Document for Ti39.5Zr39.5Ni21; however, shear rates for the Vit106 sample were not 

specified in the SRD.  Also, the Vit106 sample had cooled at a different cooling rates 

than were specified for Ti39.5Zr39.5Ni21. Calculations of the nucleation rates should be 

done for Vit106 at this lower cooling rate to reassess the targeted shear-strain rate and 

ensure the concentration profiles around subcritical nuclei did not interact during the 

experiment. 
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CHAPTER 10 

ZR64NI36 

In addition to complex alloys like Vit106, there are number of binary and ternary alloy 

that form metallic glasses under rapid solidification. This Zr64Ni36 alloy is well-studied as 

a binary analog system for multicomponent bulk metallic glass alloys.  This binary alloy 

exhibits similar properties and solidification behavior to the bulk metallic glass alloys, 

while reducing the number of interacting species which simplifies the theoretical treatment 

of nucleation and solidification.  This alloy is being used as a case study to understand the 

structure of metallic liquids in contactless levitation facilities [68]. 

This Zr64Ni36 alloy that was processed as part of batch 2 in the ISS-EML experiments 

seeking to discern a relationship between the undercooling and stirring rate. Further, 

measurements have been taken on the surface tension, viscosity, specific heat of the liquid, 

thermal transport, and electrical resistivity of the stable undercooled liquid to support 

ground-based synchrotron and neutron structural studies [37], [58]. Using the models 

described in chapter 3 a series of 5 cycles were analyzed to calculate the internal flow 

behavior; additional details on the analyzed cycles were reported in [69].  

10.1 Material Properties  

The models use the properties of Zr64Ni36 based on the measurements taken in recent 

work and provided through private communication with the researchers [53], [59]. The 

electrical conductivity of the melt is estimated to be 7.271x105 S /m over the temperature 

range of interest. The density and viscosity were measured in recent work [53], [59].   

𝜌𝜌(𝑇𝑇) = 7301.2 − 0.334𝑇𝑇 (𝑘𝑘𝑔𝑔 𝜋𝜋3⁄ ) 

24 
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 The data was fit to a VFT fit. The form of the VFT fit is given below and the constants 

are provided in Table 16 and is plotted over the measured viscosity values from the KFK 

ESL measurements [53] in Figure 33. 

𝜇𝜇 =  𝜇𝜇0 ∗ 𝐷𝐷𝑥𝑥𝑝𝑝 �
𝐷𝐷𝑇𝑇0

𝑇𝑇 −  𝑇𝑇0
� 
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Table 16: VFT fit constants for Zr64Ni36 

Constants Fitted Value 

μ0 0.001252 Pa·s 

T0 697.1651 K  

D 2.5592 

 

Figure 31: VFT viscosity fit plotted over the viscosity measurements and extended over 

the full temperature range of interest.  
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10.2 Model Results 

As before, CFD simulations were run using the melt properties and laminar flow 

models to predict the correlation of the fluid flow with the properties of the flow as the 

droplet cooled. In the cycles of interest to our collaborators, several different EML melt 

cycles were analyzed with different EML force fields. The summary of the results for the 

analyzed cycles at their recalescence temperature are presented in Table 17.  

Table 17: Summary of flow simulation results for cycles of interest in Zr64Ni36 

 

Cycle 19 

And Cycle 22 Cycle 23 Cycle 26 Cycle 29 

Recalescence 

Temperature (K) 

1040 1050 1120 1110 

Cooling Rate Prior to 

Recalescence (°C/s) 

0.67 

0.62 

0.02 0.06 1.33 

Viscosity (Pa s) 0.213 0.184 0.081 0.090 

Maximum Flow 

Velocity (m/s) 

4.54x10-3 5.24x10-3 0.038 0.074 

Reynolds Number  1.19 1.58 25.7 45.8 

Maximum Shear-

Strain Rate (s-1) 

8.2 9.5 70 130 

 

The Reynolds numbers and shear-strain rates describing the flows are plotted in 

Figure 34 and the contour plot of the shear-strain rate that results from conditions at 

recalescence is given in Figure 35. Over the full cooling range, cycle 19, 22, and 23 the 
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Reynolds numbers calculated for the flow characterize the flow to be laminar over the 

full temperature range, based on the established laminar-turbulent transition [16]. In 

Figure 34, there is a clear shift in the rate at which the shear-strain rate changes during 

cooling. This shift is explained by a corresponding change in the rate of the flow during 

cooling. Near the recalescence temperature, the shear-strain rate is largest at the poles of 

the sample, as is given in Figure 35; however, at higher temperatures the shear-strain rate 

is largest at the equator of the sample.  

 

Figure 32: Evolution of flow metrics in Zr64Ni36 experiments in ISS-EML using the VFT 

viscosity fit over the cooling range of cycles 19, 22, and 23. 
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Figure 33: Contours for the shear-strain rate in Zr64Ni36 immediately prior to recalescence 

at 1040 K during the ISS-EML experiments for cycle 19 and cycle 22. The maximum 

shear-strain rate is 8.21 s-1 which results from a viscosity of 0.213 Pa s.  

Just before recalescence, the sample’s shear-strain rate is largest near the poles of the 

sample and is approximately 16x larger than the shear-strain rate along the equator of the 

sample, as is given in Figure 35. The maximum shear-strain rate in the sample near the 

recalescence temperature is higher than the shear-strain requirements calculated for 

Ti39.5Zr39.5Ni21 cooled at 10°C/s [55]. Furthermore, the cycles for Zr64Ni36 cooled at rates 

that were more than an order of magnitude slower, given in Table 17, than was given in 

the specification. Additionally, the differences in the melt composition may change the 

chemical and thermodynamic driving forces for nucleation.  

In cycles 26 and 29, the applied current was increased resulting in increased velocities 

and shear rates during processing. In cycles 29, the EML force field was large enough to 

drive flow that is characterized as turbulent based on the calculated Reynolds numbers. 

The Reynolds number is plotted over the full temperature range using both laminar and 
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turbulent models in Figure 36 where it can be seen that the flow crosses the laminar-

turbulent transition during the cooling phase of the cycle. At 1350K, the laminar model 

predicts the flow crosses into the transitional region at Reynolds number of 600 [70]. 

Above 1350K for this cycle, the flow can be characterized as turbulent and the RNG k-ε 

model should be used to predict the flow.  

 The shear-strain rate calculated for the flow using both the laminar and turbulent flow 

models is given over the full range of interest for the cycle in Figure 37 where the shift in 

the shear-strain rate is shown in both models. It should be noted that in the shear-strain 

rate plot, the change in slope is due to the gradient of the shear-strain rate being largest at 

the equator of the drop at high temperatures and shifts to be greatest at the poles as the 

sample cools. 

 

Figure 34: Evolution of Reynolds number in Zr64Ni36 during experiments in ISS-EML 

using the VFT viscosity fit over the cooling range of cycle 29. The oscillating heater 

current is 55.7 A and the oscillating positioner current is 191.7 A.  
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Figure 35: Evolution of the maximum shear-strain rate in Zr64Ni36 experiments in ISS-

EML using the VFT viscosity fit over the cooling range of cycle 29. The oscillating 

heater current is 55.7 A and the oscillating positioner current is 191.7 A.  
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10.3 Conclusions 

Computational fluid dynamics models were analyzed to characterize the flow and 

shear-strain behavior in electromagnetic-levitation experiments on Zr64Ni36 in the ISS-

EML facility. At the time of recalescence, flow within the sample was laminar for all 5 

cycles analyzed; however, the cycles that had an applied heater voltage during the 

cooling phase of the cycle were initially turbulent and then crossed the laminar-turbulent 

transition during the cooling phase of the cycle.  Additionally, at recalescence, the shear-

strain rate was not within the specifications given in the Science Requirement Document 

for Ti39.5Zr39.5Ni21. Furthermore, the Zr64Ni36 sample had cooled at significantly slower 

rates than were specified for Ti39.5Zr39.5Ni21. Calculations should be done for Zr64Ni36 at 

this lower cooling rate to reassess the targeted shear-strain rate and ensure the 

concentration profiles around subcritical nuclei did not interact during the experiment. 
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CHAPTER 11 

CONCLUSIONS 

Computational fluid dynamics models were used to analyze the internal flow of a 

wide range of microgravity levitation experiments conducted in the ISS-EML facility. 

This includes an experiment investigating anomalous solidification behavior in an 

aluminum-nickel alloy, as well as viscosity measurements of molten germanium. In 

addition, the flow during nucleation experiments was analyzed for Ti39.5Zr39.5Ni21, 

Cu50Zr50, Vit106, and Zr64Ni36. Each of the experiments had unique set of 

experimental parameters and requirements, and as a result was calculated to be 

characterized by different flow behaviors. By analyzing the magnetohydrodynamics of 

six unique levitation experiments in microgravity, this work had demonstrated that CFD 

is a valuable approach to gaining critical insight into the fluid flow of molten metal 

samples.   
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CHAPTER 12 

FUTURE WORK 

The continued work on this project will consist of running simulations to support and 

analyze the flow conditions in ISS-EML experiments. This will include analyzing the 

flow conditions in a pure zirconium sample that was processed in August 2018 to support 

studies investigating a solidification phenomenon. In addition, collaborators have 

requested analysis of samples on recently completed and upcoming campaigns on the 

ISS.  

12.1 Zirconium 

The first sample to be analyzed is the zirconium sample processed in batch 1.3 of the 

ISS-EML experiments. This sample was originally processed in Batch 1.2 to explore the 

density, thermal transport 

measurements, surface tension, 

viscosity and undercooling as a 

function of cooling rate [64]. 

During these initial 

experiments, the sample 

displayed interesting and 

unexpected behavior when 

holding at an undercooling 

insufficient to induce 

solidification at which the 

Table 18: Targeted undercooling and applied heater 

control voltage during ISS MSL-EML experiments 

on Zirconium solidification. 

Undercooling (ΔT)°C Heater Control Voltage (V) 

Free Cooling 0.000 

25 4.919 

50 4.768 

100 4.458 

185 4.007 

225 3.706 

275 3.426 
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sample should have remained liquid but instead solidified. 

Further experiments were done in August 2018 as part of batch 1.3 to observe the 

effects of different undercooling temperatures and the time that the samples would hold 

at the given temperature before solidifying. The targeted undercooling and corresponding 

control voltage for the heater coil for these experiments are given in Table 18. 

To aid the solidification studies investigating the solidification phenomenon, this 

proposal proposes to run fluid flow simulations on the zirconium sample at the maximum 

temperature conditions and for each of the undercoolings at the hold temperature. If the 

flow is laminar under the maximum flow conditions, the maximum flow conditions and 

flow before recalescence is all that is needed. However, if the flow is turbulent under 

maximum flow conditions, it will be necessary to determine when or if the flow 

transitions to laminar during cooling and before recalescence. The models will allow for 

more accurate characterization of the flow behavior by calculating the flow velocity 

which is required for Reynolds number calculations. Solving the models also allows the 

pressure and pressure gradient within the drop to be calculated. The measurements and 

calculations will help to determine whether or not there is a relationship between the 

undercooling phenomenon and the conditions within the liquid drop like cavitation, 

internal flow, and turbulence. It has been theorized that when a cavity in a liquid 

collapses, the resulting pressure wave causes the melting temperature to spike which 

results in solidification of the undercooled liquid [71], [72]. The calculations will provide 

a qualitative basis to compare the experimental results with theory. 
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